Seroprevalence and Associated Risk Factors for Human Herpesvirus 8 Infection among People Living with HIV in Pointe-Noire and Dolisie, Republic of Congo

Evrard Gerald Launay Missamou^{1,2}, Luc Magloire Anicet Boumba^{1,2,4,5*}, Roch Bredin Bissala Nkounkou^{1,3}, Paola Candise Tsimba¹, Gervillien Arnold MALONGA¹, Christ Novely Balanda Nkouanga^{1,2}, Christy Parfait Nganga^{1,2,7}, Aladin Atandi-Batchy^{1,2,7}, Ferdinand Brel Got^{1,2}, Charley Elenga-Bongo^{1,7}, Aubierge Victoire Kimpamboundi-Matondo⁶, Jean Felix Peko¹ and Donatien Moukassa¹

ABSTRACT

Background: Human herpes virus-8 (HHV-8) is a tumor virus causing Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The seroprevalence of HHV-8 infection varies in various geographical areas, and HIV infection is a major risk factor that promotes the reactivation of HHV-8 after establishment of the latent phase. Despite the HIV burden in Congo, limited data exist on HHV-8 seroprevalence and its associated risk factors. This study aimed to determine the seroprevalence of HHV-8 and identify risk factors for human herpesvirus 8 infection among people living with HIV in Pointe-Noire and Dolisie.

Methods: A cross-sectional study was conducted between september 2023 and june 2024 among HIV patients receiving highly active antiretroviral therapy. Participants were recruited from Adolphe Sicé Hospital and the Regional Military Hospital in Pointe-Noire and Dolisie, respectively. Blood samples were collected, and all plasma were tested for anti-LANA-1 IgG using a commercial ELISA kit. HIV viral load was quantified using the GeneXpert system. Statistical analyses were performed using SPSS Statistic version 27.0.1 software, with p < 0.05 considered statistically significant.

Results: A total of 412 PLWH were recruited with an average age 47.18 ± 11.79 years, and female were more represented 75.1% (n=310). The overall seroprevalence of HHV-8 was 12.83% (53/413). HHV-8 seroprevalence was higher in Pointe-Noire 11.86% (49/413) compared to Dolisie 0.97% (4/413). HHV-8 seropositivity was significantly associated with employment status (aOR = 2.48, 95% CI: 1.04–5.91, p = 0.04) and condom use (aOR = 4.91, 95% CI: 1.1-21.85, p = 0.03). There were no significant associations of HHV-8 infection with age, sex, marital status, education level, blood transfusion, multiple sexual partners and injecting drug use.

Conclusion: Our study demonstrated the presence of HHV-8 in these locations. These findings indicate that employment status and occasional condom use influence HHV-8 transmission in this population and highlight the need for targeted preventive strategies.

Kevwords

Seroprevalence, HHV-8, Risk factors, People living with HIV.

Corresponding Author Information

Luc Magloire Anicet Boumba

Faculty of Health Sciences, Marien NGOUABI University, BP 69, Brazzaville, Republic of Congo.

Received: August 19, 2025; Accepted: September 24, 2025; Published: October 01, 2025

Copyright: © 2025 Missamou EGL, et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Citation: Missamou EGL, Boumba LMA, Bissala Nkounkou RB, Tsimba PC, Malonga G, et al. Seroprevalence and Associated Risk Factors for Human Herpesvirus 8 Infection among People Living with HIV in Pointe-Noire and Dolisie, Republic of Congo. Advances Infec Diseases Therapy. 2025;2(2):1-6.

¹Faculty of Health Sciences, Marien NGOUABI University, BP 69, Brazzaville, Republic of Congo.

²Laboratory of Virology and Molecular Biology of the Marie Madeleine GOMBES Foundation, Pointe-Noire, Republic of Congo.

³Laboratory Service, General Hospital of Djiri, Brazzaville, Republic of Congo.

^{*}Pointe-Noire Research Area, National Institute for Research in Health Sciences, Pointe-Noire, Republic of Congo.

⁶Loandjili General Hospital, Microbiology and Molecular Biology Laboratory, Pointe-Noire, Republic of Congo.

⁶Departmental Direction of Health Care and Services of Pointe-Noire, Republic of Congo.

⁷Adolph Sice Hospital General, Pointe-Noire, Republic of Congo.

Introduction

The human herpesvirus type 8 (HHV8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is an oncogenic virus belonging to the Herpesviridae family [1]. It was first identified from kaposi's sarcoma (SK) tissue in a patient with acquired immunodeficiency syndrome (AIDS) [2]. HHV-8 is the causative agent of malignancies and lymphoproliferative disorder, including all forms of KS (classic, endemic, iatrogenic and epidemic), primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD), and is also implicated in immune reconstitution inflammatory syndrome (IRIS) and kaposi sarcoma inflammatory cytokine syndrome (KICS) [3-6].

Globally, HHV-8 seroprevalence varies widely depending on the geographical area and sub population, with a North–South gradient [7]. In sub-saharan Africa, 30-50% of the population is infected with HHV-8 [8]. HHV-8 infection is endemic in many countries in this region, for example, epidemiological studies have reported HHV-8 seroprevalence in general population of 50% in Uganda, 48.3% in Gabon and 37.2% in Cameroon [9-11].

HHV-8 infection can be transmitted via both sexual and non-sexual routes. HHV-8 can be found in the peripheral blood mononuclear cells (PBMCs), saliva, oropharyngeal mucosa, semen, cervicovaginal secretions, and prostate glands, which may represent the source of both vertical and horizontal transmission [12].

HIV infection is a main risk factor for the development of HHV-8-associated malignancies [8,13]. The interaction between HIV and HHV-8 leads to increased HHV-8 viral load and enhances the risk of complications, including rapid progression to KS and other related tumors [13]. People living with HIV (PLWH) are approximately 800 times more likely to develop KS compared to the general population, making KS the most common cancer among PLWH [14]. In Republic of Congo, the prevalence of HIV among people aged 15 to 49 years is 3.2% [15], while HHV-8 seroprevalence among PLWH in Brazzaville has been reported at 19 % [16].

Despite these findings, data on HHV-8 infection remain unknown in some regions. To address the lack of data of HHV-8 infection in this population group in Pointe-Noire and Dolisie, we investigated on the seroprevalence of HHV-8 infection and associated risk factors among people living with HIV in these two urban cities.

Material and Methods Study Areas

The study was conducted in two cities, Pointe-Noire and Dolisie, located in the south part of the Republic of Congo (Figure 1). Pointe-Noire, the second-largest city lies on the Atlantic coast and Dolisie is the third-largest city in the Republic of Congo, it is located in the northeast of Pointe-Noire. Participants were recruited the at Adolphe Sicé Hospital and the Regional Military Hospital in Pointe-Noire and Dolisie respectively.

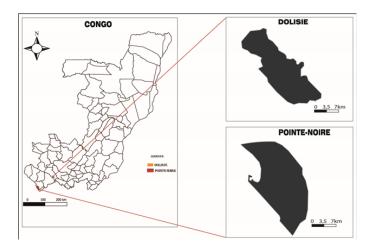


Figure 1: Map indicating the study areas (Pointe-Noire and Dolisie).

Study Population

A descriptive cross-sectional study was carried out between September 11, 2023 and June 2024. In total, 413 participants (≤ 18 years) under highly active antiretroviral therapy (HAART), including 318 from Pointe-Noire and 95 from Dolisie.

Data and Sample Collection

A questionnaire interview was conducted for all participants to collect information on sociodemographic characteristics and sexual behaviors. For each participant, blood samples were collected in two EDTA (Ethylene Diamine Tetraacetic Acid) tubes. One tube was used for HIV viral load testing, which was performed directly at different collection sites using the GeneXpert system. The second tube was transported to the molecular biology and virology laboratory of the Marie Madeleine Gombes Foundation, where all analyses were performed. Plasma was obtained after centrifugation and stored at -20°C until analyses.

HHV-8 Serelogy

All plasma samples were tested for the presence of HHV-8 antibodies using a commercial enzyme linked immunosorbent assay (ELISA) kit (anti-HHV-8 IgG ELISA kit cat: SL2685Hu, Sunlong Biotech, Hangzhou, China) following the manufacturer's instructions. The ELISA is based on the qualitative enzyme immunoassay technique. The microplate provided in this kit has been pre-coated with the latency associated nuclear antigen -1 (LANA-1), make it to solid-phase antigen. Negative and positive controls were included in the kit. The cut-off value was calculated by this formula: average OD values of the negative controls + 0.15. Samples were considered positive if the sample OD value was above the cut-off value. The equivocal HHV-8 serology results were re-tested and interpreted according to the cut-off value.

Ethics Statement

This study received authorization from the faculty of health sciences of Marien Ngouabi University, Adolphe Sicé Hospital and the Regional Military Hospital. Before enrollment, written informed

consent was obtained from each participant. Approvals were obtained from the Health Sciences Research Ethics Committee (reference number: 089 / MESRSIT /DGRST/ CERSSA/-25).

Statistical Analysis

Statistical analyses were performed using SPSS Statistic version 27.0.1 software. Qualitative variables were expressed as numbers and percentages, whereas quantitative variables were presented as mean, standard deviation (SD) and numbers. Associations between HHV-8 seropositivity and qualitative variables were evaluated by chi-square (χ^2) test, and quantitative variables were assessed using the Student's t-test. To identify risk factors associated with HHV-8 infection, univariate and multivariate analyses were carried out based on logistic regression models. Results were presented using odds ratio (OR) with 95% confidence intervals (CI), and p-value of less than 0.05 was considered statistically significant.

Result

Sociodemographic characteristics, behavioral factors and HHV-8 seroprevalence

A total of 413 participants were recruited in the study, included 77% (n=318) in Pointe-Noire and 23% (n=95) in Dolisie. The mean age of participants was 47.18 ±11.79 years and 75.1% (n=310) were female. Most of participants 97.8% (n=404) were Congolese nationality, and 61.5% (n=254) were single. Additionally, 65.4% (n=270) had attained the secondary level, and 65.4% (n=270) were employed. The large majority of them, 68.5% (n=283) reported using occasionally condoms before HIV diagnosis. Furthermore, 92% (n=380) did not receive a blood transfusion and 99.76% (n=412) did not use intravenous drugs. However, half of the participants reported having at least two sexual partners and 61.5% (254) presented with an HIV viral load of less than 1,000 copies/ml (Table 1). The overall seroprevalence was of 12.83% (53/413).

Risk Factors Associated with HHV-8 Infection

Multivariate analysis, with ORs adjusted for age, education level, and multiple sexual partners in the final model, showed no statistically significant association between HHV-8 seropositivity and the variables tested. However, the univariate analysis showed that employed participants were less likely to be HHV8 positive compared to unemployed individuals (OR = 0.40, 95% CI: 0.19 - 0.81, p = 0.012). However, after adjustment, the association reversed, with employed participants showing a significantly higher odd of HHV8 infection (aOR = 2.48, 95% CI: 1.04–5.91, p = 0.04). They had had two fold risks to be infected compared to unemployed participants. Furthermore, participants who reported "sometimes" using condoms had seven folds risk to be infected compared to those who mentioned "always" (OR = 6.70, 95% CI: 0.83 –22.04, p = 0.012). After adjusting, the association remained significant (aOR = 4.91, 95% CI: 1.1 - 21.85, p = 0.03).

Discussion

Studies on HHV-8 infection are important in regions, such as

Africa, where a significant proportion of the continent is infected with immunosuppressive agents, such as HIV [17]. In Brazzaville, previous studies showed a prevalence of HHV-8 infection at 19% among PLWH [16] and 4.9% among blood donors [18]. Nevertheless, the seroprevalence of HHV8 in Pointe-Noire and Dolisie did not determine. This study is the first to provide important insights into the seroprevalence and associated risk factors of HHV-8 infection among PLWH in these two cities of Congo.

We found an overall seroprevalence of 12.83%, with a higher prevalence in Pointe-Noire (11.86%) compared to Dolisie (0.97%) (p= 0.004). These findings demonstrate a geographical disparity in HHV-8 distribution and this can be explained by imbalance in sample size.

Our findings highlight the presence of HHV-8 in this population and suggest a risk of HHV-8-related complications, particularly in the context of immunosuppression. Our result is in agreement with the previous studies in Brazil (13.9%) and Japan (12%) among HIV/AIDS patients [19,20], and in Mali (10.4%) among blood donors [21]. It is relatively close to that reported in Brazzaville [16], but higher than that reported in Turkey (3%) [22] among PLWH. However, in other sub-Saharan African countries, where both HIV and HHV-8 are endemic, HHV-8 seroprevalence rates among PLWH exceed 50% [23,24] and our findings are not consistent with those previously reported. The observed differences in these studies could be due to the fact that they employ different serological assays with different sensitivity and specificity to detect HHV-8 antibodies and different antigens, either lytic or latent. This may also be explained by the timing of the tests. It is possible that infection was recent or in the seroconversion phase, a period during which antibodies (IgG) are not yet detectable by standard serological assays, thus leading to an underestimation of the true seroprevalence. But, there is currently no gold standard serological assay for HHV-8.

Moreover, our study demonstrated that HHV8 seroprevalence was associated with employment status. Univariate analysis indicated that being employed was associated with a lower risk of infection (OR = 0.40, p = 0.012). However, multivariate analysis revealed a **reversal of this association**, with employed participants being more than twice as likely to be infected (aOR = 2.48, p = 0.04).

HHV-8 infection was also associated with high risk sexual behavior such as inconsistent condom use. This association between the inconsistent condom use and HHV-8 seroprevalence has previously been observed in others studies [25]. Although HHV-8 is not exclusively a sexually transmitted infection, this result supports the role of sexual behavior as a key transmission route, particularly in HIV-infected individuals where immunosuppression may increase susceptibility.

One key limitation of this study is the absence of CD4 count data, which is a critical marker of immune status in people living with HIV and strongly influences the reactivation and progression of

 Table 1: Sociodemographic characteristics and behavioral factors according to HHV-8 serological status.

53 (12.83) 50.26 ± 11.15 49 (11.86) 4 (0.97) 13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75) 13 (3.15)	360 (87.17) 46.72 ± 11.83 269 (65.13) 91 (22.04) 90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24) 222 (53.75)	0.004				
49 (11.86) 4 (0.97) 13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	269 (65.13) 91 (22.04) 90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.941				
49 (11.86) 4 (0.97) 13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	269 (65.13) 91 (22.04) 90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.941				
4 (0.97) 13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	91 (22.04) 90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.941				
4 (0.97) 13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	91 (22.04) 90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.941				
13 (3.15) 40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	90 (21.8) 270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.941				
40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.039				
40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	270 (65.37) 90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.039				
40 (96.8) 9 (2.18) 29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	90 (21.79) 210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.039				
29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)					
29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)					
29 (7.02) 15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	210 (50.85) 60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)					
15 (3.63) 50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	60 (14.53) 354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.189				
50 (12.11) 2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	354 (85.72) 3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.189				
2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.189				
2 (0.48) 0 (0) 1 (0.24) 0 (0) 32 (7.75)	3 (0.73) 1 (0.24) 1 (0.24) 1 (0.24)	0.189				
0 (0) 1 (0.24) 0 (0) 32 (7.75)	1 (0.24) 1 (0.24) 1 (0.24)	0.189				
1 (0.24) 0 (0) 32 (7.75)	1 (0.24) 1 (0.24)					
0 (0) 32 (7.75)	1 (0.24)	7				
32 (7.75)		1				
	222 (53.75)					
	((+				
+1.3 (3.13)	82 (19.85)	0.98				
7 (1.7)	51 (12.35)					
1 (0.24)	5 (1.21)	-				
1 (0.21)	3 (1,21)					
0 (0)	10 (2.42)					
4 (0.97)	50 (12.11)	0.044				
41 (9.92)	207 (50.12)					
8 (1.94)	93 (22.52)	-				
0 (1.51)) (<u>12.32</u>)					
10 (2.42)	133 (32.2)					
43 (10.41)	227 (54.97)	0.01				
10 (10.11)	227 (3 1.57)					
Condom use (before knowing the HIV status) 47 (11.38) 236 (57.14)						
		0.002				
		- 0.002				
3 (6.73)	23 (3.37)					
43 (10 41)	158 (38 26)					
		< 0.001				
10 (2.12)	202 (10.71)					
lood transfusion						
		0.899				
17 (11.00)	331 (00.13)	+				
1 (0.24)	0 (0)					
		0.09				
34 (14.0)	500 (07.17)					
	HIV viral load (copies/ml) 9 (2.18) 109 (26.4)					
9 (2 18)		\dashv				
9 (2.18)		0.434				
9 (2.18) 42 (10.17) 0 (0)	14 (3.4)	1				
		3 (0.73) 101 (24.45) 3 (0.73) 23 (5.57) 43 (10.41) 158 (38.26) 10 (2.42) 202 (48.91) 4 (0.97) 29 (7.02) 49 (11.86) 331 (80.15) 1 (0.24) 0 (0) 52 (12.6) 360 (87.17) 9 (2.18) 109 (26.4) 42 (10.17) 212 (51.33)				

Table 2: Univariate and multivariate analyses of associations between selected variables and HHV-8 infection.

Variables HHV8 infection n (%)	11111/0:	Univariate analysis		Multivariate analysis	
	OR (95% CI)	p-value	aOR (95% CI)	p-value	
Age group, years					
18 - 38	9 (2.18)	Referent		Referent	
39 - 58	29 (7.02)	1.38 (0.62 - 3.03)	0.42	1.16 (0.5 - 2.67)	0.71
> 58	15 (3.63)	2.5 (1.02 - 6.079)	0.04	2.10 (0.8 - 5.53)	0.13
Education level					
Uneducated	0 (0)	Referent		Referent	
Primary	4 (0.97)	0	0.99	0	0.99
Secondary	41 (9.92)	0.93 (0.26 - 3.24)	0.9	1.05 (0.27 - 4.09)	0.94
Superior	8 (1.94)	2.3 (1.03 - 5.10)	0.04	1.82 (0.79 - 4.34)	0.15
Employment					
Unemployed	10 (2.42)	Referent		Referent	
Employed	43 (10.41)	0.397 (0.19 - 0.81)	0.012	2.48 (1.04 - 5.91)	0.04
Condom use (before knowi	ng the HIV status)				
Always	3 (0.73)	Referent		Referent	
Sometimes	47 (11.38)	6.70 (2.03 - 22.04)	0.002	4.91 (1.1 - 21. 85)	0.036
Never	3 (0.73)	4.39 (0.83 - 23.16)	0.081	2.42 (0.39 - 14.93)	0.34
Multiple sexual partners (at	least 2)				
Yes	43 (10.41)	Referent		Referent	
No	10 (2.42)	0.182 (0.89 - 0.37)	< 0.001	0.49 (0.19 - 1.29)	0.152

HHV-8 infection.

Conclusion

In conclusion, our results highlight the presence of HHV-8 among PLWH in these localities. Employed participants and those with inconsistent condom use were more likely to be HHV-8 seropositive, indicating that socioeconomic and sexual behaviors factors may play key roles in transmission. These findings emphasize the need for targeted preventive strategies and improved monitoring, particularly given the lack of CD4 data, which limits understanding of the immunological context of HHV-8 infection in this population.

References

- Jary A, Veyri M, Gothland A, Leducq V, Calvez V, et al. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers. 2021; 13: 1-23.
- Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. Identification of herpesvirus-like DNA sequences in AIDSassociated Kaposi's sarcoma. Science. 1994; 266: 1865-1869.
- Cesarman E, Chadburn A, Rubinstein PG. KSHV/HHV8mediated hematologic diseases. Blood. 2022; 139: 1013-1025.
- Guerrero C, Jain T, Kelemen K. HHV-8-Associated Lymphoproliferative Disorders and Pathogenesis in an HIV-Positive Patient. Case reports in hematology. 2019; 2019: 1-6.
- 5. Al-Obaidi A, Mahadevia H, Syed Z, Raza S. A Challenging Case of Kaposi Sarcoma Inflammatory Cytokine Syndrome. Cureus. 2023; 15: 1-6.
- 6. Poizot-Martin I, Brégigeon S, Palich R, Marcelin AG, Valantin

- MA, et al. Immune Reconstitution Inflammatory Syndrome Associated Kaposi Sarcoma. Cancers. 2022; 14: 1-15.
- 7. Rohner E, Wyss N, Trelle S, Mbulaiteye SM, Egger M, et al. Current opinion in HIV and AIDS. Systematic reviews. 2014; 3: 1-7.
- 8. Feiterna-Sperling C, Königs C, Notheis G, Buchholz B, Krüger R, et al. High seroprevalence of antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV) among HIV-1-infected children and adolescents in a non-endemic population. Medical microbiology and immunology. 2016; 205; 425-434.
- 9. Biryahwaho B, Dollard SC, Pfeiffer RM, Shebl FM, Munuo S, et al. Sex and geographic patterns of human herpesvirus 8 infection in a nationally representative population-based sample in Uganda. The Journal of infectious diseases. 2010; 202: 1347-1353.
- 10. Mamimandjiami AI, Mouinga-Ondémé A, Ramassamy JL, Djuicy DD, Afonso PV, et al. Epidemiology and Genetic Variability of HHV-8/KSHV among Rural Populations and Kaposi's Sarcoma Patients in Gabon, Central Africa. Review of the Geographical Distribution of HHV-8 K1 Genotypes in Africa. Viruses. 2021; 13: 1-16.
- 11. Betsem E, Cassar O, Afonso PV, Fontanet A, Froment A, et al. Epidemiology and genetic variability of HHV-8/KSHV in Pygmy and Bantu populations in Cameroon. PLoS neglected tropical diseases. 2014; 8: 1-9.
- 12. Bagni R, Whitby D. Kaposi's sarcoma-associated herpesvirus transmission and primary infection. Current opinion in HIV and AIDS. 2009; 4: 22-26.
- 13. Bellocchi MC, Svicher V, Ceccherini-Silberstein F. HHV-

- 8 Genetic Diversification and Its Impact on Severe Clinical Presentation of Associated Diseases. The Journal of infectious diseases. 2020; 222: 1250-1253.
- 14. Coates SJ, Leslie KS. What's new in HIV dermatology? F1000Research. 2019; 8: 1-9.
- 15. UNAIDS. Global report: UNAIDS report on the global Aids epidemic. Geneva. 2024.
- Malonga GA, Jary A, Leducq V, Moudiongui Mboungou Malanda D, Boumba ALM, et al. Seroprevalence and molecular diversity of Human Herpesvirus 8 among people living with HIV in Brazzaville, Congo. Scientific reports. 2021; 11: 1-9.
- Etta EM, Alayande DP, Mavhandu-Ramarumo LG, Gachara G, Bessong PO. HHV-8 Seroprevalence and Genotype Distribution in Africa, 1998-2017: A Systematic Review. Viruses. 2018; 10: 1-17.
- 18. Iloukou PJ, Boumba AL, Ngombe DF, Massengo NR, Malonga GA, et al. Molecular detection and genotyping of human herpes virus 8 in blood donors in Congo. Problems of Vrology. 2024; 69: 277-284.
- 19. Pierrotti LC, Etzel A, Sumita LM, Braga PE, Eluf-Neto J, et al. Human herpesvirus 8 (HHV-8) infection in HIV/AIDS patients from Santos, Brazil: seroprevalence and associated factors. Sexually transmitted diseases. 2005; 32: 57-63.
- 20. Watanabe D, Yamamoto Y, Suzuki S, Ashida M, Matsumoto E, et al. Cross-sectional and longitudinal investigation of human herpesvirus 8 seroprevalence in HIV-1-infected individuals in Osaka, Japan. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy. 2017; 23: 201-

- 205.
- 21. Malonga GA, Dienta S, Traore FT, Maiga Z, Ba A, et al. Human Herpesvirus 8 seroprevalence among blood donors in Mali. Journal of medical virology. 2022; 94: 4554-4558.
- 22. Ekenoğlu Merdan Y, Merdan S, Etiz P. Marked temporal decline in human herpesvirus-8 seroprevalence among people living with HIV in Istanbul, Türkiye. Diagnostic microbiology and infectious disease. 2025; 113: 1-5.
- 23. Ogoina D, Onyemelukwe G, Musa BO, Babadoko A. Seroprevalence and determinants of human herpes virus 8 infection in adult Nigerians with and without HIV-1 infection. African health sciences. 2011; 11: 158-162.
- 24. Jacky NB, Paul N, Lilian M, Sylvie AD. Seroprevalence of human herpes virus-8 in HIV-positive patients at the General Hospital of Yaounde Cameroon. The Pan African medical journal. 2015; 20: 1-7.
- 25. Liu Z, Fang Q, Zuo J, Chen Y, Minhas V, et al. Global epidemiology of human herpesvirus 8 in men who have sex with men: A systematic review and meta-analysis. Journal of medical virology. 2018; 90: 582-591.